Some Notes on Twenty One (21) Nearest Prototype Classifiers
نویسندگان
چکیده
Comparisons made in two studies of 21 methods for finding prototypes upon which to base the nearest prototype classifier are discussed. The criteria used to compare the methods are by whether they: (i) select or extract point prototypes; (ii) employ preor post-supervision; and (iii) specify the number of prototypes a priori, or obtain this number “automatically”. Numerical experiments with 5 data sets suggest that pre-supervised, extraction methods offer a better chance for success to the casual user than postsupervised, selection schemes. Our calculations also suggest that methods which find the "best" number of prototypes "automatically" are not superior to user specification of this parameter.
منابع مشابه
Self-generating prototypes for pattern classification
Prototype classifiers are a type of pattern classifiers, whereby a number of prototypes are designed for each class so as they act as representatives of the patterns of the class. Prototype classifiers are considered among the simplest and best performers in classification problems. However, they need careful positioning of prototypes to capture the distribution of each class region and/or to d...
متن کاملPrototype reduction techniques: A comparison among different approaches
The main two drawbacks of nearest neighbor based classifiers are: high CPU costs when the number of samples in the training set is high and performance extremely sensitive to outliers. Several attempts of overcoming such drawbacks have been proposed in the pattern recognition field aimed at selecting/gen-erating an adequate subset of prototypes from the training set. The problem addressed in th...
متن کاملFast Most Similar Neighbor (MSN) classifiers for Mixed Data
The k nearest neighbor (k-NN) classifier has been extensively used in Pattern Recognition because of its simplicity and its good performance. However, in large datasets applications, the exhaustive k-NN classifier becomes impractical. Therefore, many fast kNN classifiers have been developed; most of them rely on metric properties (usually the triangle inequality) to reduce the number of prototy...
متن کاملEvolutionary Design of Nearest Prototype Classifiers
In pattern classification problems, many works have been carried out with the aim of designing good classifiers from different perspectives. These works achieve very good results in many domains. However, in general they are very dependent on some crucial parameters involved in the design. These parameters have to be found by a trial and error process or by some automatic methods, like heuristi...
متن کاملA comparison of stacking with MDTs to bagging, boosting, and other stacking methods
In this paper, we present an integration of the algorithm MLC4.5 for learning meta decision trees (MDTs) into the Weka data mining suite. MDTs are a method for combining multiple classifiers. Instead of giving a prediction, MDT leaves specify which classifier should be used to obtain a prediction. The algorithm is based on the C4.5 algorithm for learning ordinary decision trees. An extensive pe...
متن کامل